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Abstract. At a sufficiently low temperature electrons on the surface of liquid helium form a
classical Wigner crystal. As long as the electron drift velocity is not too large the electron lattice
distorts the helium surface to form a lattice of dimples, which leads to an enhanced electron effective
mass. This system is observed to exhibit a complicated non-linear magnetoconductivity, which we
discuss in terms of a simple classical model. The model displays in a unified way the effects of
two phenomena that have been treated separately by other authors: Bragg– ¸Cerenkov scattering of
capillary waves, and decoupling of the electrons from the dimples at high electric fields (sliding).
Our results differ in important ways from those of the other authors.

1. Introduction

Electrons can be trapped in surface states above the free surface of liquid helium [1].
A sheet of such electrons forms a classical Wigner crystal when the plasma parameter,
0 = e2n

1/2
0 /4π1/2ε0kBT , exceeds a value equal to about 127 [2]. For a typical electron areal

density,n0, of 1012 m−2, the melting temperature is about 200 mK. As long as the crystal is not
exposed to too large a horizontal (driving) electric field the electrons distort the surface of the
helium to form a lattice of dimples, which has the effect of increasing the effective mass of the
electrons [3]. In spite of the fact that electrons form such a simple system, magnetoresistance
experiments on the crystal phase reveal a very complex non-linear behaviour at rather large
driving electric fields, which we shall discuss in this paper.

Experiments generally make use of a Corbino geometry, in which the response of the
system is measured when an ac drive voltage,V , is applied between concentric inner and outer
electrodes, the magnetic field,B, being applied normal to the electron sheet. The electrodes
couple to the electrons through capacitances that have impedances much larger than that of
the electron system, so thatV determines (and is proportional to) the radial component of
the current density in this system. The electric field in a Corbino geometry must be purely
radial. Figure 1 shows schematically how the magnetoconductivity,σxx , varies withV (x is
radial), according to Shirahama and Kono [4]; the magnetic field is large enough to ensure
thatωcτ � 1, whereωc is the cyclotron frequency andτ is the electron relaxation time, so
that the Hall angle is close toπ/2. We distinguish three regions that show different behaviour
asV increases. At small values ofV there is a region, I, in whichσ−1

xx rises rapidly from a
low value to a maximum; for intermediate values ofV there is a region, II, in whichσ−1

xx falls,
approximately asV −1; in a third region, III, at highV , σ−1

xx suddenly increases, in a hysteretic
manner, to a value close to that expected in the fluid phase, in which the electron effective mass
has not been enhanced by the formation of dimples, and in which the conductivity is almost
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Figure 1. A schematic plot showing how, typically, the magnetoconductivity,σxx , varies with the
driving voltage,V , in the experiments of Shirahama and Kono [4].

independent ofV . Similar results have been reported by Lea’s group (see, for example, [5]),
although region I is seen only occasionally.

According to Shirahama and Kono the sharp rise inσ−1
xx in region III is due to a decoupling

of the electron crystal from the dimple lattice (sliding) when the electric field is sufficiently high,
with a consequent disappearance of the dimple lattice. The non-linear behaviour in regions I
and II is taken into account by Shirahama and Kono but is not explained. An explanation of the
behaviour in region II has been given by Dykman and Rubo [6]. They attribute the behaviour
in this region to an azimuthal electron (Hall) velocity that is limited by ‘Bragg– ¸Cerenkov’
scattering of capillary waves to a constant value equal to the phase velocity of capillary waves
on the helium surface with wavevector equal in magnitude to the smallest reciprocal lattice
vector,G1, in the electron crystal (we refer to the simplest case when the electron velocity
is parallel toG1). Region I remains a mystery, and it seems to call for further experimental
investigation.

It must be the case that the electron–dimple decoupling and the Bragg– ¸Cerenkov scattering
are interconnected, and this should be taken into account in a proper treatment of the decoupling.
In this paper we suggest such a treatment, albeit with some simplifications. In contrast to the
work of Dykman and Rubo, our treatment is entirely classical; the essential physics seems to
be contained in such a treatment. Our results substantiate a suggestion by Fisheret al [3] that
decoupling is associated with a movement of the electron crystal at a velocity exceeding the
phase velocity of capillary waves with wavevector equal toG1.

2. Analysis of the classical model

For the present we shall ignore the Corbino geometry: we shall take the electric field as pointing
uniformly in thex-direction in Cartesian coordinates; the magnetic field is in thez-direction,
which we take to be away from the surface, so that the electron drift motion is mostly in the
y-direction (large Hall angle). We shall base our discussion on a simple one-dimensional model
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that focuses on the electron motion in they-direction; the correct two-dimensional model is
easily developed and leads to no new physics. The existence of the electron crystal leads to
a steady vertical force acting on the liquid surface, with Fourier components at the reciprocal
lattice vectors of the crystal, and it is this force that is responsible for the dimples. We shall
suppose for simplicity that the smallest reciprocal lattice vector,G1, points in they-direction,
and we shall take into account distortion of the surface due only to this Fourier component of
the vertical force (again a more accurate model is easily developed). This component has the
form

f = n0eEzR[exp i(G1y −�t)] (1)

whereEz is the vertical electric holding field (including the image field), andR denotes the
real part. Electrons are at the points given byG1y = �t + 2nπ , wheren is an integer, so that
the electron crystal is moving with steady velocityvy = �/G1 in they-direction. Because the
Hall angle is largevy � vx . We have assumed that the Debye–Waller factor for the crystal is
unity; the necessary correction is easy to make (see [4]). To find the corresponding distortion
of the helium surface we note that the boundary condition at the free surface of the liquid
(z = 0) can be written in the form [7]

−∂f
∂t

+ ρ
∂2φ

∂t2
− α ∂

∂z

(
∂2φ

∂y2

)
= 0 atz = 0 (2)

whereφ is the velocity potential describing the motion of the helium, which has densityρ and
surface tensionα. Neglect of the effect of gravity in equation (2) is justified at the relevant
frequencies. We takeφ to have the form

φ = R[φ0 exp(G1z) exp i(G1y −�t)] (3)

appropriate to an incompressible fluid. The boundary condition (2) is then satisfied provided
that

φ0 = i�n0eEz

ρ�2 − αG3
1

. (4)

The corresponding displacement of the surface,ζ , is then given by

ζ = R[ζ0 exp i(G1y −�t)] (5)

where

ζ0 =
(
−n0eEz

ρG1

)
1

v2
y − v2

1

(6)

andv2
1 = αG1/ρ. We note the existence of an undamped resonance when the electron drift

velocity approaches the phase velocity of the capillary waves of wavenumberG1. This is
the Bragg– ¸Cerenkov scattering in our model. The value ofζ0 is essentially the depth of the
dimple, and it will determine the effective mass of an electron; this mass will therefore increase
with increasing electron velocity, tending to infinity atvy = v1. The electron velocity cannot
therefore exceedv1, a result that is required to explain the experimental results in region II, and
which was discussed from a slightly different point of view in [6]. The divergence atvy = v1

is of course unphysical, because we have neglected damping. Damping will arise from two
effects: the natural damping of the capillary waves; and radiative loss of capillary wave energy
from an electron crystal of effectively finite size. An effectively finite size may arise from the
lack of long-range order in the electron crystal, either from its being polycrystalline or because
of the inherent lack of long-range crystalline order in two dimensions; or it may arise because
only limited areas of the crystal can satisfy the condition for the Bragg– ¸Cerenkov scattering
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at any one time, as must be the case with the Corbino geometry. In the presence of damping
equation (6) must be modified; the simplest modification that probably describes the essential
physics is

ζ0 =
(
−n0eEz

ρG1

)
1

v2
y − v2

1 + ivdvy
(7)

wherevd is a measure of the strength of the damping, and where we shall assume thatvd is a
constant, independent ofvy , whenvy is close tov1.

The displacement of the surface of the helium is then given by

− ρG1

n0eEz
ζ = (v2

y − v2
1)

(v2
y − v2

1)
2 + v2

dv
2
y

cos(G1y −�t) +
vdvy

(v2
y − v2

1)
2 + v2

dv
2
y

sin(G1y −�t). (8)

Consider the electron at the pointy = �t/G1. Interaction with the distorted surface of the
helium will lead to a horizontal force on the electron, which is given by

F = eEz
(
∂ζ

∂y

)
y=�t/G1

(9)

as we see if we remember that the force acting on the electron from the helium must be normal
to the helium surface. It follows that

F = −n0e
2E2

z

ρ

vdvy

(v2
y − v2

1)
2 + v2

dv
2
y

. (10)

As a function of the velocityvy this force has a maximum magnitude given by

Fmax=
n0e

2E2
z

ρvdv1
(11)

if the damping is small. An electron will be subject to an electromagnetic force in the
y-direction equal to−evxB. In a steady state this force will be balanced by a combination
of the force (10) and the ordinary drag force on the electron due to the scattering of thermal
ripplons. The rapidly increasing value of (10) asvy → v1 leads to the electron velocity
becoming constant at a value close tov1, and hence to the behaviour observed in region II, as
suggested in [5, 6]. However, as the electromagnetic force increases, there comes a point when
the difference between the electromagnetic force and the ordinary drag force exceedsFmax,
and the balance of forces is no longer possible. At this point the electrons must decouple from
the dimple lattice. The dimple lattice must disappear, the electron velocityvy must become
significantly greater thanv1 and the electron conductivity must become similar to that in the
fluid phase, as is observed in region III.

The idea that region III is associated with sliding and destruction of the dimple lattice was
suggested by Shirahama and Kono [4]. However, the details of their picture differ from those
suggested here. In their treatment they assume for the purposes of calculating the threshold
field for sliding that the deformation of the helium surface is rigid and static. The treatment
we give here takes proper account of the dynamical response of the helium surface.

The critical value of the conductivityσxx at which sliding starts to occur is easily shown
to be given by

σc = n0Fmax

B2v1
= n2

0e
2E2

z

αG1B2vd
. (12)

Comparison of the details with experiment is difficult for two reasons. First, the Corbino
geometry implies that the electron current density is not spatially uniform, and that the relative
directions of these currents and the reciprocal lattice vectors of the crystal vary from place
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to place. The latter problem will be intensified if the electrons do not form a single crystal.
Secondly, the damping coefficient,vd , is difficult to calculate, especially under spatially non-
uniform conditions. Only limited areas of the crystal can be involved at any one time in the
Bragg–Çerenkov scattering. The damping will depend in part on the extent to which these
regions radiate the generated capillary waves into other parts of the crystal, which we have not
yet attempted to calculate. Indeed, it is not yet clear how the damping might depend on the
detailed conditions, such as the densityn0.

3. Conclusions

In summary, we have presented calculations based on a simple classical model to help us
understandin a unified waythe observed non-linear magnetoconductivity of the surface
electrons on liquid helium when the electrons are in the crystal phase. The model includes the
possibility of Bragg– ¸Cerenkov scattering of capillary waves, first discussed in quantum terms
by Dykman and Rubo [6], and it shows how decoupling of the crystal from the underlying
dimple lattice can occur at high fields. The decoupling is shown to occur in a way that is
significantly different from that suggested by Shirahama and Kono [4].
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